• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
termlife-insurancequot

termlife-insurancequot

termlife-insurancequot

  • Home
  • Business
  • Health
  • Science
  • Sports
  • Technology
  • About us
  • Contact us
You are here: Home / Science / Blood-red aurora transforms into ‘STEVE’ before stargazer’s eyes

Blood-red aurora transforms into ‘STEVE’ before stargazer’s eyes

June 22, 2022 by admin_o94ra5pd

Blood-red aurora transforms into 'STEVE' before stargazer's eyes

On March 17, 2015, a blood-red arc of light cut through the sky hundreds of miles above New Zealand. Over the next half hour, an amateur skywatcher observed that arc as it transformed before his eyes into one of Earth’s most puzzling atmospheric mysteries — the eerie ribbon of light known as STEVE — newly released images reveal.

STEVE, short for “strong thermal velocity enhancement,” is an atmospheric oddity first described in 2018, after amateur aurora chasers saw a narrow stream of gauzy purple light arc across the sky over northern Canada. Scientists who studied the phenomenon soon confirmed that STEVE was not an aurora — the multi-colored glow that appears at high latitudes when solar particles collide with atoms high in Earth’s atmosphere. Rather, STEVE was  a separate and unique phenomenon that’s “completely unknown” to science.

Unlike the northern lights, which tend to shimmer in broad bands of green, blue or reddish light depending on their altitude, STEVE typically appears as a single ribbon of purplish-white light that stabs straight upward for hundreds of miles. Sometimes it is accompanied by a broken green line of lights nicknamed the “picket fence” phenomenon. Both STEVE and its picket fence friend appear much lower in the sky than a typical aurora does, in a part of the atmosphere known as the subauroral region, where charged solar particles are unlikely to trespass.

Now, new research published in the journal Geophysical Research Letters has linked STEVE to another subauroral structure, known as stable auroral red (SAR) arcs, for the first time.

The complete set of auroral images, showing the auroral objects through a range of color filters.

The complete set of auroral images taken by a citizen scientist, showing the auroral objects through a range of color filters. (Image credit: Martinis et al.)

In the new study, the authors compared the New Zealand skywatcher’s March 2015 footage with contemporaneous satellite observations and data from an all-sky imager at the nearby University of Canterbury Mount John Observatory. Combining these three sources gave the researchers a comprehensive look at STEVE’s unexpected appearance that night.

That evening’s sky show began with the appearance of a blood-red SAR arc that swooped at least 185 miles (300 kilometers) over Dunedin, New Zealand. Satellite data showed that the arc’s appearance coincided with a strong geomagnetic storm — a showering of charged solar particles into Earth’s upper atmosphere — that lasted for approximately half an hour.

As the storm subsided, the red arc gradually gave way to the signature mauve streak of STEVE, which slashed through the sky in almost the exact same spot. Just before STEVE faded, the green picket fence structure shimmered into view. According to the researchers, this is the first recorded occurrence of all three structures appearing in the sky together, one after the other — possibly revealing new clues about the formation and evolution of STEVE.

“These phenomena are distinct from auroras, as their optical signatures appear to be triggered by extreme thermal and kinetic energy in Earth’s atmosphere, rather than produced by energetic particles raining down into our atmosphere,” the researchers wrote in the new study.

Satellite observations of the event suggest that the night’s geomagnetic storm may have played a key role in this parade of sky lights.

During the storm, a fast-moving jet of charged particles appeared alongside the red SAR arc, the researchers wrote. Known as subauroral ion drift (SAID), these streams of hot, fast particles typically appear in the sky’s subauroral zone during geomagnetic storms. The satellite observations also showed that the stream’s heat and speed intensified when STEVE appeared about 30 minutes later.

According to the researchers, a “plausible generation mechanism” for STEVE could be the interaction between these fast-moving ion streams and nitrogen molecules in the subauroral zone; when the charged, hot particles bash against nitrogen molecules, the molecules become excited, emitting mauve light to burn off their extra energy.

The new study illuminates parts of the mysterious phenomenon, but more observations of STEVE — from citizen scientists and professional researchers alike — are needed to further pin down this theory.

Originally published on Live Science.

#Bloodred #aurora #transforms #STEVE #stargazers #eyes

Filed Under: Science Tagged With: aurora, Bloodred, Eyes, stargazers, STEVE, transforms

Primary Sidebar

Recent Posts

  • Nordic Walking Is Pretty Badass, Actually
  • Futures Signal Further Losses; What To Do Now
  • F1 22 Review – IGN
  • Brooklyn Nets need to play hardball with Kevin Durant’s desired destinations of Miami Heat or Phoenix Suns
  • Women who have gone through menopause have ‘hyperintensities’, raises risk of Alzheimer’s – Daily Mail

No comments to show.

Categories

  • Business
  • Health
  • Science
  • Sports
  • Technology

Copyright © 2022 termlife-insurancequote.com

  • Privacy Policy
  • Terms And Conditions
  • Affiliate Disclosure
  • About
  • Contact
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT